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General question: features of the full counting statistics (ie, the probability distribution of
charge transmitted) in quantum dots and similar devices in the presence of strong
interactions, when a Fermi liquid picture does not hold.

WOrkK In progress



Probing LQP on the edge

® LQP which are gapped in the bulk are liberated at the edge.The gapless shape
distorsions in the Hall fluid are excitations in a gas of fractionally charged QP

B Two possible set-ups
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B Tunneling between edges
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M |In a nutshell: ' Crossover
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Key idea: shot (Schottky) noise in the VWBS limit should give access to charge of LQP

steady current measurements do not give access to the charge of the carriers



® Generalizing Schottky formula
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M Beautiful experiments
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Full counting statistics

B Generating function of cumulants of backscattered charge

Z(x) = <\Ijo‘ei><@(t)6—i><@(0)|\po> O(t) = ¢t (0)e 11

(Measure the charge backscattered at time 0 and again at time t Levitov et al. 96 )

® Naively, periodicity of the FCS in counting variable should change between WBS and
SBS limits

does the FCS exhibit a phase transition in its analytic structure!?

lvanov & Abanov 10



®The answer to this problem can be obtained (formally) in the scaling limit by solving the
boundary sine-Gordon model out of equilibrium (Fendley Ludwig Saleur 95, Saleur Weiss 00, Bazhanov
Lukyanov Zamolodchikov 98) at T=0
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Of course nothing happens for the cumulants themselves!



BThe analytical properties of this function are in fact well known (generalized hypergeometric
functions (Fendley Saleur) . In the simplest case v = 1/2 (which is free), one has

radius of convergence

V=1V,

What does " really” happen?



Some numerical studies

BFor technical reasons it’s been easier to study the IRLM
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and its lattice discretizations. This is equivalent to BSG only for U=0 (free case) corresponding
to v=1/2 and U =7 corresponding to v = 1/4 formally (realized in factin v =5/2

case)



BCharge transmutation in this case is between e/2 tunneling at high-energy (large voltage or small
tunneling amplitude) and 2e tunneling at low-energy.
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The ratio e}, /et - = 1/4 isequalto v =1/4

BA long collaboration with P. Schmitteckert in Karlsruhe has verified most of the analytical results.
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BA technical remark: the formulas for the FCS now are
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(These expressions correspond to smooth continuation for small values of the counting parameter)

Period should go 47 — 7 as one goes from weak to strong tunneling amplitudes.



BMore recently the FCS has become numerically accessible!!!
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fitting parameter at all.

F [Tg]

Example in region V' > V.

X [r]
Re F(y), Vgp=3.11V, t’=0.3, Vgp=1.363
Im F(y), Vgp=3.11V,_ X ’=0.3, Vgp=1.363
+ t'=0.3, Vgp=2.0 M=120,'=0.3, Vgp=1.363
X t'=0.3, Vgp=2.0 A M=120,'=0.3, Vgp=1.363
A t'=0.25, Vqp=1.5684 Re F(X), Vyp=2.51 V,
0] t'=0.25, Vqp=1.5684 Im F(y), V¢p=2.51V,




Note: one definitely sees more than current and noise!

[Tg]

-real(Fg (X)), imag((Fo (X))

Thick lines: Fg replaced by 5th order expansion in x
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Corrections to leading behavior

Bt is however difficult to see the change of periodicity directly: data becomes extremely unstable
beyond X = 7 .In fact, the question of long time corrections to the leading behavior plays a big rc

the study of a potential phase transition of the FCS

BWe have strong numerical and analytical evidence that, at least for the BSG model

F=IZ(x,t) ~ Fot+ FiIn(Vt) + ...
where moreover Fl is universal.  Universal logarithmic corrections?

BMoreover we believe that



BWhere the formula comes from
Consider first a binomial process where a particle has probability p to tunnel. If n is the cha
transterred, we have

(€X") =1+ p(eX —1)

If we have N particles incident, and N also fluctuates,

(eXQ) = /p(N)dN exp {N1In [l + (X —1)p]}

Now if p is Gaussian
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In our problem, we will see that Ng o< t, o* ocInt

U(I) charge fluctuations in one dimension o In N



For free fermions and energy independent scattering,

(eX®) ~ exp {’;—V In [1+ (e™X — 1)p}} X exp {fl—z x In [1 4 (e — 1)p}}

s U

(up to sub leading terms)

For free fermions and energy dependent scattering now ( energy o e?)

/ /

the leading term is determined by low energy
Levitov Lesovik 93 excitations, at the Fermi surface

(eiXQ> A exp {tvF/ p(@)d—e In [1 + (e" — 1)7(9)]} X exp {jfl—t x In* [1 + (e — l)p(A)]}

Muzykantskii Adamov 03
Hassler Suslov Graf Lebedev Lesovik Blatter 08



BIn BSG, the semi classical description using integrable quasi particles has been successful - and got:
justified for the leading terms in the FCS. A naive extension would give the correction term
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that's the conjecture



@Serious analytical checks
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Leading non trivial order involves four charges
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and requires repeated use of stationary phase approximation
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before conjecture can be checked (it works).
* Case g — 0 :can be mapped onto a Langevin equation formalism

* Case g =1/2, g =1 can be analyzed using a determinant formulation and the Fisher Hartwig
conjecture

Hassler Suslov Graf Lebedev Lesovik Blatter 08

but there are subtleties near the transition point of the FCS.



* Details on the semi-classical case
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Fluctuations are Gaussian and affect only the second cumulant (the shot noise)



* Details on the non-interacting case

In fact the problem is well under control only for

Z(x) = (eXTireler) — det (14 (X — 1)g) G = sm;ké(_@- ;)j>>

T=1+(eX —1)g is Toeplitz, with

Ty= [ Gre Do) = [ TN [L (e - Dk )]

o 2T o 2T

Leading behavior is well known

Abanov, lvanov, Cheianov

™ db k- Klich, Levitov, Lesovik
InZ(x) ~ L/ — Int(0) =i—xL
T
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Corrections are described by Fisher Hartwig conjecture

Extension to transport case not so clear, at least for corrections (Hassler et al.)
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-real F(x)

BThe formula however cannot work for X' large enough because of the singularity of the FCS
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| radius of convergence
getting through for X' large enough
V=1V



SD-IRLM, V. =0.374, x=0.67
Fit: Fo( X, Vsp) + cos( 0.63(Vsp - V) tm + n)/ (2m)
0.45

right above V.

-real F(x)
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right below V.
BThe data is compatible with
- A
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V-V,

so the FCS I is oscillating between the two main sheets



Conclusions

BThe existence of universal 1/t corrections to the FCS in general seems reasonable

It is related with the logarithmic fluctuations of the charge in one dimension.

BThe magical relationship with the FCS itself is probably only true in some integrable cases.
We haven’t even fully derived it however.

a is a sign of transition between electrons and Lauglin quasiparticles.
Not sure how it would be affected by non integrable terms. Case of finite temperature under
investigation

MGeneral question of



