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Anderson orthogonality again

B Modern point of view: Conformal boundary conditions changing operators
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Calculate the same correlation function in a Hamiltonian formalism (in imaginary time)
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BForgetting about the left boundary condition (fixed in what follows): we see that
ground states with different conformal boundary conditions are orthogonal. This is the
same as the Anderson Orthogonality catastrophe (Anderson 67) using

* single impurity in 3D gapless + isotropy and reduction to s waves

* giving equivalence to | dim quantum Hamiltonian

* and equivalence of impurity fixed point with conformal
boundary condition in the 2 dim Euclidian



BAnderson Orthogonality catastrophe (Anderson 67)

has nothing to do with interactions. Can be understood simply for free fermions (Landau Fermi
liquid) as a collective effect : cumulated phase shift of all the one electron states hidden in the
Fermi sea.
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BThe catastrophe in the (anisotropic) Kondo problem: phase shifts at the Fermi surface
with and without the Kondo impurity differ by 6 = 7 .The ground states with and
without the impurity are orthogonal:

The impurity coupling (the Kondo temperature) is therefore non perturbative .



B It is useful to think more about energy scales. While in general anisotropic Kondo is
not a one fermion problem, we can think of the particular (Toulouse) anisotropy where it
is. There, the interaction on the boundary, means the fermions do not see conformal
boundary conditions and have an energy dependent phase shift:
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If one of the Kondo temperatures is zero (no Kondo coupling), shifts at the Fermi surface differ
by <
2
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If both Kondo temperatures are non zero (two different, non zero values of the Kondo

coupling), shifts at the Fermi surface are both equal to § =7 so there is a non zero overlap
for the corresponding ground states



If one of the Kondo temperatures is much greater than the other:
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BIn general, and in the scaling limit such a scalar product is a universal function of the
ratio T/T!" (it is not perturbative in either of these temperatures, and it’s not a one
electron problem either)

ground states with two different A

Kondo couplings

\ ground state with no Kondo coupling

what is this function in the free case, in the interacting case?



The set-up

BAnisotropic Kondo: 3D spinful Fermi liquid interacting with localized magnetic impurity.
Spherical waves + reduction to s mode + bosonization + decoupling of the charge
degrees of freedom + SU(2) interaction broken down to U(I) leaves
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what we want are the overlaps of the ground states of |d Hamiltonians
for two different values of the impurity coupling J,



®This hamiltonian occurs in a variety of other contexts: two state problem in dissipative
quantum mechanics, IRLM,...
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In general, one can use a similar description but the corresponding massless particles
bear little relationship to the original electrons:

anisotropic Kondo is integrable

These matrix elements are crucial in the study of quenches: example of the Kondo exciton
(absorption of a photon ~ turning on Kondo coupling)



| In this context the overlap gives access to the probability for the system to remain in
the ground state after a quench
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can (in principle) be determined by an axiomatic form-factors approach

This was used to calculate the Loschmidt echo and the work distribution in the Kondo exciton
problem (Vasseur, Trinh, Haas, Saleur 13)

Some information on |T§<2) <WC‘WC>T§§>‘ can then be obtained by resumming the series - not too
efficient however.

® Can one get the overlaps directly and exactly? (Lesage Saleur 98)



Some ideas about the formalism

®In imaginary time, the insertion of the impurity
can be thought of in terms of a monodromy matrix \
M. It acts on the spin degrees of freedom, and its boson
elements are operators acting in the (right moving) — I spin
free boson Hilbert space. (Bazhanov Lukyanov

Zamolochikov 94) j

BThis is exactly the continuum limit of the six

vertex model monodromy matrix, in the

particular case of a vertical line carrying a large

bare rapidity




®The monodromy matrix can be expressed as
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Integrability of Kondo arises in this context from the zero curvature representation of (classical) SG
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requires splitting the monodromy matrix

BThe geometry we are interested in is . . o
into two objects propagating (in the

&

vertical sense) from y = —ocoto y = ()
and from y =0 to y = o0
Ty

lattice vertex operators (Foda Jimbo Miwa)

In the classical case, one writes M (6) = T'(0)Q(0)

Jost solutions

so we need a quantum version of the Jost functions (Lukyanov, Shatashvili 93,94)



BNote: in order to have T and Q act on the
same space one needs to turn to radial
quantization (corner transfer matrix)
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now there is an anomalous dimension

we're interested in objects acting on the spin degrees of freedom, and which are in
fact operators acting on the free boson Hilbert space



Relations satisfied by T

® Recall that anisotropic Kondo can be studied using massless scattering (massless limit of the
soliton/antisoliton description of SG) (Faddeed Takhtajan, Andrei, Fendley, Fendley Saleur, Zamo”2...)
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B Massless kinks scatter on the Kondo impurity with (Andrei, Fendley)

Note: it does not depend on the (Kondo) anisotropy!
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we treat impurities just like one more type of particle; the Kondo coupling is traded for a ‘rapidity’
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B The ZF and Joost operators have different quantum group symmetries ¢z = et qu=ct =g

like the SG S matrices and the 6 vertex R matrices. Can be seen from the TBA ({ =n—1)
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The main result

B Bosonization of form factors (Lukyanov) leads to (7x/7x’ = )
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® Checks from weak to strong coupling
Kondo fixed point
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® Perturbative calculations require both Kondo couplings to be non zero to avoid the catastrophe.
JP — g

The expansion variable is then 7’  requiring knowledge of correlation functions for non zero

Kondo coupling to start with!

Can be done in the free fermion case where

the calculation can be reformulated in terms

of an Ising model with two different boundary

fields. The scalar product is essentially the term

of order one in L for the partition function L
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Can also be done in the semiclassical case
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® Numerics: difficult because scalar product evolves slowly, and finite size effects are very big (bare
coupling must be very small, but Kondo length much smaller than system size!)
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Other overlaps: Form factors for ‘BC
changing operators’

B Follow by ‘ordinary axiomatic approach’

Eg leading diagram for Loschmidt echo: o s
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leading to work distribution etc.



® Note that the ratios are well defined in the conformal limit, even if scalar products all vanish.
Example at the Toulouse point (Ising model)
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® In general the approach remains plagued by IR divergences: Anderson catastrophe strikes back!



For instance the Loschmidt echo (in imaginary time) for a quench at the Toulouse point will involve
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can be calculated by writing it as
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same with 7 =0

IR divergences can be subtracted
by simultaneous expansion of numerator
and denominator

known from FF axioms

leading to (Vasseur et al. 2013)
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B This converges also in real time, giving access eg to the Loschmidt echo for a sudden quench in
the RLM
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quenched tunneling amplitude, which is the same
as the bare Kondo coupling
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the work distribution then has a bump around the Kondo temperature (Tureci et al.2011)
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Conclusion

B While a lot of things are possible, things are not particularly pretty in general.

® This kind of approach starts from excitations over the physical vacuum, ie a vacuum filled with

a large number of particles. Alternative approaches start from bare vacuum - better suited to
different problems (N.Andrei)

B The overlap of ground states is an intriguing exception. Hints at more structure (differential
equations), bypassing the Bethe ansatz.



