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Fascinating also from a technical perspective, as it combines with the
of entanglement
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A few aspects...



The problem:

Entanglement crossovers in RG flows

in the context of quantum impurity problems. Some examples:
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by a variety of tricks these problems are all technically related. To fix ideas let’s take the
second problem. In the UV the system is cut in half,and the entanglement of A with the rest is
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we allowed for impurity (boundary)entropies (Affleck Ludwig) in the O(1) g factors

We want to know how S varies in between



Entanglement is non perturbative

To fix ideas some more: take H = JY (S8 +SIS/,+AS?S,)
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J' is the perturbation (tunneling amplitude). Setting h =2 (1 — — arccos A)

Perturbation has dimension D=h/2 and is always relevant in the RG sense. It is associated with
a healing (Kondo) length
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Is S universal along the RG flow? How does it vary as a function of L,[,Tg ?



The tricks of conformal field theory can be extended at least formally
to study crossovers: perturbed CFT

Replica trick: Sa = —limp_,1 £Try,(pa)"
Continue analytically from n € N
Hence define theory on multi-sheeted Riemann surface
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Since it’s a T=0 problem, integrals run over
infinite imaginary time direction




The Reny entropy is essentially the two point function of twist operators.

As a result, like for most p point functions in PCFT, there are no UV divergences if D=7 <
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But there are strong IR divergences: / 2D divergesin 0 or o
0

the size L does not act as a cutoff. For entanglement, divergences appear at first non trivial order: the
leading correction to S is thus non analytic in J’!

Contrast with boundary (Affleck Ludwig) entropy where finite T act as cutoff

Compare with screening cloud (Affleck Barzykin 1997)

General field theoretic arguments however suggest that, since we consider a two point function
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05(a=1{/L,L) The only universal part
Oln L = f(LTg,£/1) “effective” central charge
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However, in the symmetric (Kondo like) case, scaling is better
S(L/Q, L) — S[R — g(LTB)

No known way to calculate or approximate f or g analytically except in integrable cases



Entanglement in integrable QFT

* Integrability means here existence of a basis of excitations whose dynamics is factorized on
two body processes, with no particle production either in the bulk or in the interaction with the
impurity. While most often used in the massive case, this basis exists also in the massless case.

* The excitations (quasiparticles) are L or R moving, and live on the n copies of the initial theory

* The two point function of the twist operators is calculated by expanding on the gp basis and requires
knowledge of form-factors (Cardy, Castro-Alvaredo, Doyon 2007)
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insert sum over intermediate states

The expansion in terms of k converges very fast, for all values of L and impurity couplings

(even though the theory is massless)



A simple example: the RLM (XX chains + dot). Still non trivial since twist fields are very
non local in terms of the (n copies of) fermions.
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Integrability can also mean full knowledge of the low energy action, and a meaningful “irrelevant”
perturbation theory (Lesage Saleur 1996). Eg for anisotropic Kondo (the previous case with o =1/2
then describes the Toulouse point)
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FIG. 1: The form factor approximations together with the IR expansion
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Some conclusions

* It is possible to understand non analyticity of S as a function of the couplings using CFT arguments

* Apart from integrable cases, there is no known way to get analytical results (not even perturbative)
about S.

* General, instanton like expansions? AdS/CFT duality? (Albash, Johnson, Saleur)



