Fusion in the affine Temperley-Lieb
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Some physics motivations (Paul Martin)

B 2 dim Critical statistical mechanics systems like the Ising model

energy E({Si})=-J Z SiS;, Si==%£1
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correlation functions of local observables decay as power laws (SiySiy) —l——— Scaling dimension

Y
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properties become universal and can be described by

conformal field theory

(which means in particular that correlation functions have nice properties under conformal transformations)

B |n practice - and in physics - CFT relies on two technical features

e Representation theory of the Virasoro algebra

(L, Ln] = (1 — 1) Ly + %(nf” Y -

(infinite dimensional Lie algebra with central extension)

® the conformal bootstrap

qualitative idea: the product of two local observables seen at large distance should behave like a sum
of local observables (with well defined scaling dimensions) - the Operator Product Expansion (OPE)



example:

X S;

11

\ ~ €= energy (=5;,5i,, 11,12 neighbors)

X 9;

12

this gets formalized in the language of vertex operator algebras (VOA)

@ There are reasons why it is important to understand better these two aspects directly on
the lattice - where, for instance, the conformal symmetry cannot be exact.

one of these reasons is that we don’t understand
much to Logarithmic CFT (non semi-simple cases)

In quantum field theory, unitarity is mandatory. It implies semi-simplicity, and, in many cases,
allows full classification of Virasoro modules that can appear (e.g. c<1 classification, Friedan Qiu Shenker,
Rocha Caridi, Feigin Fuchs)



In statistical mechanics, there is no such constraint. Percolation, Self-avoiding walks,disordered electronic systems

all correspond to non-unitary CFTs. This translates into non semi-simple Virasoro representation theory. And Virasoro
is wild (Germoni).

The hope is that we can understand what kind of algebraic properties to expect in the CFT from those we

can investigate analytically/numerically on the lattice. That’s the “associative algebraic approach to LCFT”
(Read Saleur 2001)

® Now, the parallels between the Virasoro and the Temperley-Lieb algebra are plenty (see later)

in particular, Temperley-Lieb appears in the detailed description of the lattice models (eg, in the construction
of the transfer matrix/Hamiltonian), and generators are roughly like the stress-energy tensor

raising the question

® what is the TL analog of OPEs!?



Fusion in open TL

& In CFT, there are really two Virasoro algebras L,,, L, .That’s because physical fields &z, z)
are non chiral.

B There is however a situation where physical fields are chiral, the so called
Boundary CFT (BCFT).

this should correspond to the ordinary TL algebra

The (finite) Temperley—Lieb (TL) algebra TLxy(m) is an associative algebra over C
generated by unit 1 and e;, with 1 < 5 < N — 1, satisfying the defining relations

2 f— .
e; = me;,

(21) ejej:tlej = Gj,
ejer = €Re; (j#k, k£1).

This algebra has a well-known faithful diagrammatical representation in terms of non-
crossing pairings on a rectangle with N points on each of the opposite sides. Multipli-
cation is performed by placing two rectangles on top of each other, and replacing any
closed loops by a factor m. While the identity corresponds to the diagram in which each
point is directly connected to the point above it, the generator e; is represented by the
diagram, see Fig. 2, where the points ¢ on both sides of the rectangle are connected to the
point ¢+ 1 on the same side, all other points being connected like in the identity diagram.
The defining relations are easily checked by using isotopy ambient on the boundary of
the rectangle, see Fig. 3.



1 ot +1 N

FI1GURE 2. The diagrammatic representation of e;.
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FIGURE 3. The diagrammatic version of the relation e;e;;1e; = e;.

M Fusion in this case was defined in Read Saleur 200 |

| - ! attach two sides by adding
the glueing generator



Definition 2.2.1 ([21, 29]). Let M, and M; be two modules over TLy, and TLy, respec-
tively. Then, the tensor product My @ My is a module over the product TLy, ® TLy, of
the two algebras. Using the standard embedding, we consider this product of algebras as

a subalgebra in TLy, for N = N1+ Ny. The fusion (bi-)functor

(24) Xg CN1 X CN2 — CN1+N2

on two modules My and My is then defined as the module induced from this subalgebra,
1.€.,

(25) M1 Xf M2 = TI_N ®<TLN1®TLN2> M1 (%9 M2 ,

where we used the balanced tensor product over TLy, ® TLy,.

M Straightforward results in the generic case.

2.3. Standard and projective TL modules. We also recall the standard TLy(m)
modules W;[N] of the weight < j < N/2, where = (N mod2). First, we need
to introduce “half-diagrams” (usually called link states) obtained from Temperley-Lieb
diagrams (i.e., non-crossing pairings on a rectangle with NV points on each of the opposite
sides) and cutting these diagrams horizontally in the middle. Each half has N points:
some of them are connected by arcs, and some others are not connected to anything.
The latter are often called through-lines (or defects). The algebra acts in the obvious
diagrammatic way by concatenating Temperley-Lieb diagrams with link states, elimi-
nating all loops in price of multiplying the diagram by m”, where n is the number of
loops, and keeping track of the connectivities using isotopy. It is clear that the num-
ber of through-lines cannot increase under the action of the algebra. Standard modules
W;|N] are obtained by letting the algebra act as usual when the number of through-
lines — denoted by 27 — is conserved, and setting this action to zero when the number of
through-lines decreases. It is well known that these modules are irreducible for q generic,
while their dimension is given by differences of binomial coefficients

(2.7) dj[N]=<gjij>_(%+]§+1)'



J1+J2
le[Nl] Xf sz N2 @ W Nl + NQ] SU(2)q, Schur-Weyl

|71 —J2]

® Complex and fascinating results for  a root of unity (m =q+q~ ")

of particular interest in the physics literature has been fusion of projective modules
(they seem to be what matters for physics)

q = em/P W[N] = Xj[N] — Xjips[N] s = s(j) = (2j + 1) mod p

Kytola, Ridout, St Aubin, Kausch,

/ \ Gaberdiel, Nahm, Pearce, Rasmussen,
X;p—sIN]  Belletete, Jacobsen, Gaynutdinov, Read,

- \ / Saleur [2007-2016]

“matches” fusion of staggered Virasoro modules in LCFT

precise categorical equivalence Gaynutdinov Saleur 2016



Fusion in affine TL 07

® We now go back to the bulk (non-boundary) case.This should correspond to a TL algebra
acting on a periodic system, the affine TL (Martin-Saleur 93, Jones 94, Green 98, Erdmann Green 99)

3.1.1. Definition I: generators and relations. The affine Temperley—Lieb (aTL) algebra
T%(m) is an associative algebra over C generated by u, ™' | and e;, with j € Z/NZ,
satisfying the defining relations

2 _ .
e; = mej,

(31) GjGj:thj = Gj,
ejer = €Le; (j £k, k£1),
which are the standard TL relations but defined for the indices modulo N, and
~1

ue;u = €541,
(32) U2€N_1 = €1...€eN_-1,
where the indices 7 = 1,..., N are again interpreted modulo N.

............................ 9 Terrssssssessssast s s sy 9 Teirsssssssssssasesnaaraanan 9 Cearsrsssssrsasasasnsnrnanay

F1GURE 4. Examples of affine diagrams for N = 4, with the left and right
sides of the framing rectangle identified. The first diagram represents
the translation generator u while the second diagram is for the generator
eq € T§(m). The third and fourth ones are examples of j = 0 diagrams.



® Note that diagrams in this algebra allow winding of through lines around the annulus any number of
times, and different windings result in independant algebra elements. Moreover, in the ideal of zero
through lines, any number of non-contractible loops is allowed. The algebra is thus infinite dimensional.

B Fusion in this affine case requires glueing two cylinders. How do we do this without cutting them

open!

| Affine braid group

£ S N
—) fe )

,/' down there, the legs have disappeared!

/ — / (gigz':lzlgi = gi:l:lgigi:tl)




M The trick Gaynutdinov Saleur 2016

we can embed the product of two affine TL algebras, T%, and T%,, into T%

with N = N; + N,. Let us denote the generators in the ith algebra as u® and eﬁi), with

i = 1,2, and use standard notations for the generators in the “big” algebra T%;. We first
(2)

J

37) e, e meman  1<j<NI -1, 1<k< N1

define the map on the TL generators e:’, where j # 0, in the standard way

The translation generators ©") and u(? are mapped as (recall, we set N = N; 4+ N;)

(3.8) u = gyt .. g u? = gy, ... giu.

INn terms of diagrams:

) e ;
N A7

where we assumed that N; = 3 and N, = 2, and for the second translation u® we have
the diagram

/\\/ under

X

ol - A



M One can check that:
u Wy — 3 @y,M

1))2 2\ 2
(U( )) EN;—1 — €1...EN; -1, (U( )) €r,—1 = ENy+1 - - -

M Next, we define the map on the periodic TL generators

1 — —_
66) = 9N, ”’gN—l@OgNl—l"‘gNi7

2 —1 —1
€@ = Y0 ---9N,—1 N1 INi—-1--- O
in terms of diagrams:
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M One can check that:

) )

el = u@el) ()T = (@) Telu® =12

6(()z)€§z)e(()z) _ 6(()2’)7 652)6(()1)651) _ €§i),
e(()Z)eg\sz—le(()z) — 6(()7/)7 6%2;—16(()1)6%—1 — 65\2—17

681)682) _ 682)6(()1)

AN

this holds only because of the above/under pattern



M So now we can do fusion:

Definition 4.1. Let M, and M, be two modules over T, (m) and T4, (m) respectively.
Then, the tensor product My & My is a module over the product T4, (m) ® T¢, (m) of
the two algebras. Using the embedding (3.24), we consider this product of algebras as a
subalgebra in TG (m), for N = Ny + No. The (affine) fusion functor Xy on two modules
M and My is then defined as the module induced from this subalgebra, i.e.

(41) M1 X M2 :TN ®(T§LV1®T']1V2) M1®M2,

where we used the balanced tensor product over T4, ® TY, and we abuse the notation by
writing TS instead of T%(m).

[N] (Martin-Saleur/

B The results are a bit complicated. First, introduce standard modules W; .
Graham Lehrer)

Here 2j is the number of through lines as usual. z is a complex number whose role is to "unwind’ through lines that go
around the cylinder: whenever the 2] lines go arond clockwise we unwind them at the price of a
factor 1/z;counterclockwise leads to a factor z instead. Finally, for =0, non contractible loops are eliminated for a factor

z+1/z



we then have the conjectured results (based on direct calculations)

le,zl [Nl] ;<\f Wj2,22 [NZ] — Wj,Z[Nl T NQ]

no sum!

e For j = 51 + 7o and any values of 71, ja:
a0 = (iVa) 22, = (i) T
e For j = j; — 75 and either 5 = 0 or j5 > O:
__ (s +2j2 +1 — (s —2j1 ,—1
2= (ivVa) 2, e =(iVa) 2
e For j = j5 — 71 and either 5 =0 or 5, > O:
s = (AP, = (i)

Gaynutdinov Jacobsen Saleur 2016

otherwise fusion is zero

M this fusion is non-commutative, and associative



| this exists another fusion X, obtained by switching over and under, and the two are
related by braiding

\

Ml[Nl] ;<\f MQ[NQ] i) MQ[NQ] ;<\f_ Ml[Nl]

@ a technical remark: it is well known how affine TL can be obtained as a quotient of affine Hecke.
There is meanwhile a well known fusion in affine Hecke, Zelevinsky tensor product.The problem is,

that this tensor product and the quotient to get affine TL are not, in general, compatible (so the
result is “zero’). We have checked that, when it is compatible, our results are recovered.

there’s room for a theorem!



Affine TL fusion in the conformal
limit

M |t is possible to define the “scaling limit” of the ATL modules. This is done by considering a lattice
model whose critical Boltzmann weights provide, in the transfer matrix description, a representation of
ATL (see Paul Martin’s book!). In a nutshell, we take a Hamiltonian

H = _Ziei

while the logarithm of the translation generator gives us the momentum P. The generating function of
their spectra gives us characters of Virasoro

Tr ¢ BrUH—Neo) =i P N_>OO> Tr qLo—C/24q—Eo—c/24

trace taken over modules of ATL trace taken over modules of Vir x Vir

where ¢q(q) = exp [—QWW(BR + @'51)} (Cardy)



BOne finds, then that our fusion corresponds to glueing the right component of one field with the left
component of the other field. Schematically:

Verma modules with Virasoro highest

weight h,h’
Wj,z — Viry, X ﬁh’ /

where, setting q = erit, c=1- 2z +1) and h,h’ are functions of |,z

(Vll’h X Vlrh/ VlI'h/ X Vlrh//) = (Virh X Whu)

\/

the same conformal weight

B We don’t yet understand what to do with this. It may be our fusion is not the right one for physical
applications.



Conclusions

@ Physicists have to do representation theory to understand in detail the relationship between lattice
models and their conformal invariant limits. This is particularly crucial to make progress on logarithmic

CFTs (non semi-simple VOAs) which play a role in the description of many systems of interest (in
particular those involving disorder)

B Apart from modules and fusion, another hot topic is the understanding of lattice models “Hilbert
spaces’ as bimodules over ATL and its centralizer

JI'Ly

o R | e | \  Gaynutdinov, Read, Saleur
......... | . 013

(m=0,gi(1/1)) g e ey




B Questions for mathematicians: Fusion in other algebras? Blob/boundary Temperley-Lieb/Temperley-
Lieb type B,C

® ATL and affine quantum groups!?



