Quantum entanglement in
non-hermitian critical spin chains
and
non-unitary CFTs

work in preparation with R. Couvreur and J.L. Jacobsen

European Research Council

e 18 erc hubert.saleur@cea.fr



mailto:hubert.saleur@cea.fr?subject=

russian mathematical physics



Entanglement and CFT

B Concepts of quantum information are profoundly affecting our understanding of and approach
to quantum many-body systems

® This is especially true of quantum critical points in1d where these concepts can be merged with
CFT ideas

One of the main concepts in this case is entanglement entropy

B A B
E a subregion of length L

In the ground state we have p = 0)(0| . Define the reduced density operator pa = 1rpp

a1d CFT
~]_—~ (gapless spin chain)

in its ground state

and the (Von Neumann entanglement entropy EE) 5S4 = —Trapalnpa

The key resultis |[S4 ~ 3 In — with c the central charge




B Non-hermitian “Hamiltonians” are (increasingly) important:

e phenomenological description of open quantum systems
(imaginary terms on the boundary)

e many 2d statistical mechanics systems in their 1+1d formulation

such as SAW, percolation, hard hexagons (Yang-Lee singularity)
e some 2+1d guantum mechanical systems in their 1+1d formulation

such as plateau transitions in several classes of top. insulators

e all the field theories and spin chains on supermanifolds

What to do with entanglement in this case?

® A reminder from non-unitary CFT: the central charge also appears in the scaling of the ground
state energy on a circle



(p—p')?

® [n minimal non-unitary CFTs c=1-6 s

there is a state of negative conformal weight /min =

and the “real ground state” scales with the “effective central charge” cesr = ¢ — 24hmin

[Itzykson,Saleur,Zuber 1986]

: : : 2
(for example Yang-Lee universality classis p=5,p"=2, c¢=——, cer = = )

M |t is natural to expect that, in these cases at least, we will have Sa C;ff In(L/a)

@ But it is far from obvious. In particular, recall that the entanglement does not depend on the
(conformal state) in which it is calculated! [Alcaraz,Berganza,Sierra 2011]

a more sophisticated explanation (based on modified twist fields in the replica approach
is proposed in [Doyon, Castro-Alvaredo, Ravanini, Bianchini, Levi 2014]

but the issue is full of surprises



Entanglement in quantum group symmetric chains

B We'll consider chains (C®2)®Nand“hamiltonians” with Uysl(2) symmetry (¢ € C, |q| = 1)

which can be expressed in terms of the Temperley-Lieb generators

1 q+q! q—q
€; :—5[ ¢Ui+1+0%03+1 +T(Uizaf+1 o 1)+

Some simple exercises.

Take N =2 and H = —ej.Although H is not hermitian its eigenvalues

arereal E(0) = —(¢+¢ ') and EW =0

B The ground state (H|0) = E@|0))is [0) = J=(¢7"/?| 1) — ¢'/2[ 1))

[ (00 0 o0
setting p = |0)(0| = 5 (8 _lq 4 8> and choosing for subsystem A the left spin gives
00 0 0

pa=12(39) and S4=1In2 independently of q.



® In fact one should worry about left and right eigenstates ({ H|Eg) = E|ER) )

HT|EL) = E|EL)
with [00) = —— (a2 1) —a7*/? 1))

and define the density operator as a projector 1
onto the ground state qg+qt

Use now partial quantum (Jones) traces

pa = Trp (¢7%5p) = 0= (51)

and define a quantum group EE:

Sa=—Tr(q*Apalnpa) =In(g+q")

This new quantity depends on q and is pleasantly related with the g-dimension of spin half rep.

Towards loop models.

@ Recall the TL algebra

e; = (q+q e,
€i€i£1€; = €4,
lei,e;] =0 for |i — j| > 1



which admits a diagram representation with generators acting on lines and ¢; = X

closed loops having weight n =q + ¢

® On two sites and for H = —e¢; the loop model ground state is |0y) = \/Lﬁu
(normalized for the loop scalar product)
The loop density operator reads ¢ = %|0£><O€’ = %X
B The loop trace gives pPA¢ = % |
and the loop entanglement  Sa¢ = —Tr(palogpas) = —n X %log% = logn

which is the same as the quantum group entanglement.

Claims.

B The QGEE can be defined more generally, and it obeys many interesting properties naturally
required from entanglement. Its definition is particularly interesting when A is made of multiple

segments (topological order and Hopf algebras?).

@ The QGEE coincides with the loop model entanglement.We’'ll see soon what this means
geometrically



CFT and QGEE

B The QG symmetric XXZ chain with H = — Z e; is known to be critical with
c=1-— % parametrizing ¢ = ™/ (zT1)

B The ordinary entanglement is insensitive to the boundary terms and thus behaves like for ordinary
XXZ with  ceg = 1 (so in this case the expected result for non unitary models holds)

Let us study instesd the QGEE

@ Replica trick: go to imaginary time and calculate the partition function on an N-sheeted Riemann
surface [Cardy-Calabrese 2004-2016] infinite sheets project onto L and R ground states

SO get |0g) (0|

A

open lips build the partial density matrix
(here A is interval of length L)

\ \\‘3\

the model on the Riemann surface leads to

SW) = ﬁ ln the partition function




B To calculate the QGEE we use the loop formulation. The QG symmetric Hamiltonian gives rise, in
the imaginary time version, to a model of (dense) self and mutually avoiding loops with fugacity n.

In the plane, it is and old story that this model is described in the scaling limit by a free boson
(Coulomb gas) with action

Alg] = & [ &%z [(0:9)° + (0y9)°]

The boson arises from a SOS representation where loops are oriented (orientations summed over)
and an arrow is interpreted as a wall between regions of different height.

In this picture, the microscopic weight n per loop is obtained by associating with every turn of an
oriented loop a complex weight, eg €T7€0/% for the model on the square lattice. In the plane

AN, = +4 gives n = 2 COS €

2
e
Finallyy, 9=1—¢c0 =77 and c=1—6g°

B To calculate the Renyi entropy, we put the loop model on the Riemann surface. Now all loops
must have the same weight n. But some of them can wind around the staircase(s)!

0 geometry with A on the edge




B The complex weights give the wrong fugacity 2 cos Nmegto these non-contractible loops

B To calculate the scaling behavior of the partition function we must impose sewing conditions on
N free bosons ¢;(z") = ¢;+1(27)

and correct the loop fugacity by inserting vertex operators at the extremities
of the cut  explie (1 + ... + O~ ) (21, Z1r)]

N —1 N +1
€g, €p = —
N N

with &= €0

Sewing conditions are implemented by forming linear combinations of the bosons, which see
complex twists e2imk/N

& The final result is unsurprisingly Z(V) 7, 6(N—%)(1—6e5/9)

and thus the Renyi entropy SN — Db [1 — x(afirl)} In L

so QGEE scales with the real central charge



Entanglement in non-unitary minimal models

(p—p')?

® The minimal diagonal CFT with ¢=1-6 -

can be obtained as the scaling limit of a RSOS

lattice model with heights taking values 1,---.p—1 (p<p')

/

M These models are “equivalent” to the loop model with 7 = 2cos w2 up to topological effects

® For the Renyi entropy in the ground state we can still use the Riemann surface approach (note:

0.) = |0g) for these models)

but now one needs to sum over sectors where non contractible loops get weights

ng =2cosm—, k=1,...,p—1
D

The sector with k¥ = 1 dominates and gives Ceff as expected
The sector with k£ =p—p’'(which would give c) is subleading.

B Many interesting questions: how to extract the real central charge for a given non-unitary theory
using entanglement? What is the structure of the entanglement spectrum? Does one get the effective
central charge for all boundary conditions?



B Numerics:
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Entanglement in super(algebra) symmetric models

® Motivation is to study susy chains whose central charge vanishes (partition function is trivial)

®m Canonical example is the sl(2/1) spin chain with alternating fundamental and conjugate (used

to study percolation hulls of plateau transtion in class C of topological insulators [Gruzberg, Read
1999,Ludwig Read Saleur 2001]

In V states 1,2 are bosonic and state 3 is fermionic. Same in V' . Moreover. (3]3} = —1

In subspace  |11),]22), |33)

1 1 —1
61:|OR><OL| = (1 1 1)
1 1 —1

pa =STrpp =[1)(1]+ [2)(2] +[3)(3]

Str p =1

|
™



If however we take traces instead of supertraces we get ~ pY = =5 (J1)(1] + [2)(2] + |3)(3|)

and a non trivial result §1(4N) =1In3

®@ Same definition applied to whole chain gives

Coit = 1+ 25 (log 355)" ~ 1.84464 . .



Conclusions

There are questions specific to the non-unitary case. In particular about
the behavior of the QGEE under RG flows

However elementary, the lattice approach opens the possibility to study a bunch
of questions like:

® Entanglement in chains with non-cocommutative Hopf algebra symmetries!?

B Detailed structure of the entanglement spectrum in minimal CFTs/RSOS models (whose
Hilbert space is not a tensor product)

® Entanglement when ground state is not normalizable? (eg, black hole sigma model)

the evidence is that it is related with the normalizable state of lowest energy

® Entanglement when theory has a continuous spectrum?

the m — oo limit of minimal models gives c=1 Liouville [Runkel Watts]

and our approach gives ko
7 ‘LW -

1
S=—-In—+klnln —
3 a a



B For loop models enthusiasts: EE in multicut situations (eg negativity) involves interesting
topological problems...



