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 In  stat. mech. or solid state phys., spectra of critical exponents are usually discrete.
E.g. compactified free boson
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 Discreteness comes from the compact target. This can be seen well in the high 
temperature (mini superspace) approximation
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x dependency neglected

Hamiltonian becomes Laplacian on target

H =
1
2

� L

0
dx

�
(∂xΦ)2 + Π2

�

Φ ≡ Φ + 2πr

h =
1
8π

�
n

r
+ 2πrw

�2
; h̄ =

1
8π

�
n

r
− 2πrw

�2
; n, w integers

H =
1

2L
Π2

0 = − 1
2L

∂2

(∂Φ0)2

[Π0,Φ0] = i

Ψ(Φ0) ∝ exp (inΦ0/r)

h + h̄ =
n

2

4πr2

|G|2

gl(2|2)

U(1,1|2)
U(1|1)×U(1|1)

θ = π

1

H =
1
2

� L

0
dx

�
(∂xΦ)2 + Π2

�

Φ ≡ Φ + 2πr

h =
1
8π

�
n

r
+ 2πrw

�2
; h̄ =

1
8π

�
n

r
− 2πrw

�2
; n, w integers

H =
1

2L
Π2

0 = − 1
2L

∂2

(∂Φ0)2

[Π0,Φ0] = i

Ψ(Φ0) ∝ exp (inΦ0/r)

h + h̄ =
n

2

4πr2

|G|2

gl(2|2)

U(1,1|2)
U(1|1)×U(1|1)

θ = π

1

H =
1
2

� L

0
dx

�
(∂xΦ)2 + Π2

�

Φ ≡ Φ + 2πr

h =
1
8π

�
n

r
+ 2πrw

�2
; h̄ =

1
8π

�
n

r
− 2πrw

�2
; n, w integers

H =
1

2L
Π2

0 = − 1
2L

∂2

(∂Φ0)2

[Π0,Φ0] = i

Ψ(Φ0) ∝ exp (inΦ0/r)

h + h̄ =
n

2

4πr2

|G|2

gl(2|2)

U(1,1|2)
U(1|1)×U(1|1)

θ = π

1

Compact and non compact targets
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compact target implies discrete spectrum of critical exponents
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 Several problems of   stat. mech. or solid state phys. however involve non compact 
targets

For instance, IQHE plateau transition in the Chalker Coddington model. Calculation of  Plateau transition in IQHE (1/2)

� Chalker-Coddington model

(one term in path integral for |G |2)

� Efetov’s SUSY trick

|G (r1, r2)|2 = [Db±][Df±](b+b∗−)(r1)(b
∗
+b−)(r2)e

−A[b+,f+,b−,f−]

� Average over disorder: b
m+
+ f

n+
+ b

m−
− f

n−
− =2πδ(m++n+−m−−n−)
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involves sum over paths with multiple overlaps

Maps onto alternating             spin chain with infinite dimensional reps. 
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and onto the                          sigma model at 
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non compact target + supergroup symmetry!

[Levine-Levy-Pruisken ’83;
Efetov ’83;Chalker-Coddington ’88;
Weidenmueller ’87;
Read ’89; Zirnbauer ’99...]
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 Some CFT results are available in the unitary case (Liouville, Witten’s Euclidian 
black hole = sine Liouville). Little to nothing has been known up to now about the 
connection with lattice models; the RG flows; or the non unitary (supergroup) case

 Essential difficulty: lack of connection with stat. mech. techniques. In particular non 
compact integrable spin chains have resisted years of effort 

[Gawedzky; Dijkgraaf Verlinde Verlinde; Maldacena Ooguri; Teschner, Zamolodchikov^2; Fateev...]

[Faddeev Korchemsly; Belitsky et al.; Sklyanin;...]

 There’s many other examples: spin quantum Hall, Nishimori point in disordered 
Ising, all geometrical problems with weak self-avoidance

Spontaneous Non compact symmetry breaking?

 There’s also many related examples on the AdS side of the AdS/CFT correspondence
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 Main message: non compact (L,C)FTs can be studied using proper non Hermitian 
compact spin chains

[Essler-Frahm-HS ’05; Jacobsen-HS ’06, Ikhlef-Jacobsen-HS ’08 ’12, Candu Ikhlef ’13] 
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Staggered six-vertex model
� R-matrix:

R(u) =





a(u) 0 0 0

0 b(u) e−iuc 0

0 e+iuc b(u) 0

0 0 0 a(u)



 ,






a(u)=sin(γ−u)

b(u)=sin u

c=sin γ

� Rapidity lines:

v

u := R(u − v)

� Staggered spectral parameters

0 0 0π
2

π
2

π
2

u

u

u + π
2

u + π
2

 Staggered 6 vertex model

A lattice model for the black hole CFT

Baxter’ solution of  antiferromagnetic 
Potts model on square lattice
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Integrable structure
� Family of commuting transfer matrices

t(u) = Tr0 [R0,2L(u − π/2)R0,2L−1(u) . . . R02(u − π/2)R01(u)]

� Conserved quantities

Q
(n)
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����
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Q
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� Important examples

� Hamiltonian H =
d
du

�
log t(u)t

�
u +

π
2

����
u=0

H =

2L�

j=1

�
− 1

2
σj · σj+2 + sin

2 γ σz
j σ

z
j+1

+ i sin γ (σz
j−1 − σz

j+2)(σ
x
j σx

j+1 + σy
j σy

j+1)

�

� Momentum e
−iP ∝ t(0)t(π/2)

� “Quasi-momentum” S := log
�
t
−1

(0)t
�

π
2

��

Twice as many as
 for XXZ chain!

Finite, 2dim. reps.
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Bethe-Ansatz solution (1/2)

� BA equations:

�
sinh(αj + iγ)

sinh(αj − iγ)

�L

= −
�

�

sinh(
αj−α�

2 + iγ)

sinh(
αj−α�

2 − iγ)

� Energy: E =
�

j

2 sin2 2γ

cosh 2αj − cos 2γ

� Low-energy states:
Im α α1j = λ1j + iπ

2

α2j = λ2j − iπ
2

Λ ∝ log L−Λ
Re α

 Bethe ansatz solution:
Ordinary XXZ would have
factor one half

Two lines of roots in ground state: two holes quantum numbers 
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 Study of finite size corrections

Identification of the CFT
� Conformal dimensions (γ = π/k, k ∈]2,+∞[):

xe,m,s =
m2

2k
+

ke2

2
+

s2

k − 2

Same spectrum as WZW model on SL(2,R)/U(1)!

� k=level, (e,m)=exc. in compact direction, s=string momentum

� Density of states: ρ(s) = 2
π [log L + ∂s(sB)]

� Numerical solution of NLIE → B6V (s)
� Analytic calculation in SL(2,R)/U(1):

ρ(s) =
2

π
[− log � + ∂s(sB)]

B(s) =
1

2s
Im log

�
Γ

�
1−m + ek

2
− is

�
Γ

�
1−m − ek

2
− is

��

[Maldacena-Ooguri ’01]
[Hanany-Prezas-Troost ’02]
[Israel-Pakman-Troost ’04]

Scaling of ground state energy: 
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Scaling of gaps (naive): 

Bethe-Ansatz solution (2/2)

� BA equations and conserved quantities:

Lp(λaj) = 2πIaj −
�

b,�

θ[λaj − λb� + iπ(a− b)]

E =
�

a,j

�(λaj) , P =
�

a,j

p(λaj) , S =
�

a,j

(−1)a s(λaj)

� Continuum approximation:

� ρa(λ) := density of roots of type a

� BAE: p�(λ) = 2πρa(λ)−
�

b

dµ Kab(λ− µ)ρb(µ)

� Kernel matrix: Kab(λ) := θ�[λ + iπ(a− b)]
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Effect of singularity

� Eigenvalues of matrix �g(ω):

�gev(ω) =
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� Correct scaling limit:
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� Careful WH or NLIE ⇒ xe,m,s =
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conformal ground state appears infinitely degenerate
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Scaling of gaps (less naive): 
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continuous spectrum of critical 
exponents!
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 Identification of CFT.  The model admits a natural massive deformation, with conserved 
quantities at all grades 

Integrable structure
� Family of commuting transfer matrices
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whose UV limit is related with Witten’s Euclidian black hole CFT.
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 2D Euclidian  black hole CFT 

Identification of the CFT
� Conformal dimensions (γ = π/k, k ∈]2,+∞[):

xe,m,s =
m2

2k
+

ke2

2
+

s2

k − 2

Same spectrum as WZW model on SL(2,R)/U(1)!

� k=level, (e,m)=exc. in compact direction, s=string momentum

� Density of states: ρ(s) = 2
π [log L + ∂s(sB)]

� Numerical solution of NLIE → B6V (s)
� Analytic calculation in SL(2,R)/U(1):

ρ(s) =
2

π
[− log � + ∂s(sB)]
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2s
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2
− is

�
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�
1−m − ek

2
− is

��

[Maldacena-Ooguri ’01]
[Hanany-Prezas-Troost ’02]
[Israel-Pakman-Troost ’04]

Gauged                         WZW model

It corresponds to a two dimensional surface in three dimensions with the rough shape of a cigar. More

precisely, the target has rotational invariance around the z axis, while the radius in the x, y plane is given

by tanhr, r being the geodesic distance from the origin. We have

x = sinh r cos θ

y = sinh r sin θ (74)

and the metric reads as well

dσ2
=

dx2 + dy2

1 + x2 + y2
(75)

The Gauss curvature is

K =
2

1 + x2 + y2
=

2

cosh
2 r

(76)

As discussed by Witten, the metric is not Ricci flat, so if one thinks of this as an ordinary sigma model, it

seems it should flow and not describe a CFT. There is however an extra term making the theory gapless

(the ‘dilaton’ field), which leads to

A =
k

4π

�
d2x
√

hhij
�
∂ir∂jr + tanh

2 r∂iθ∂jθ
�
− 1

8π

�
d2x
√

hΦ(r, θ)R(2)
(77)

where R(2) is the WS curvature. One has moreover

Φ(r, θ) = 2 ln cosh r + Φ0 (78)

The central charge can be calculated by going to the flat region (r → ∞) where Φ ≈ 2r and r behaves

like a non compact free boson. One finds

c = 2 +
6

k
(79)

This gets corrected in the full quantum theory into

c = 2 +
6

k − 2
(80)

Note meanwhile that we can introduce the complex field z = x + iy (Kruskal coordinates) and rewrite

the classical action (minus the dilaton term) as

A =
k

4π

�
d2x
√

hhij ∂iz∂jz∗

1 + |z|2 (81)

The best way to understand the physics of this CFT is to study it within the minisuperspace approx-

imation, that is, solve the Laplacian on the target

∆ = −2

k

�
∂2

r + (cothr + tanhr) ∂r + coth
2r∂2

θ

�
(82)

It seems that there are no L2 normalizable eigenfunctions. All that can be done is δ function normalizable

eigenfunctions. They depend on two parameters: one is n ∈ Z, the angular momentum of rotations

around the axis, and j = − 1
2 + is is related with the momentum s along the ρ direction of the cigar. The

corresponding eigenvalue of the Laplacian is

∆ = h + h̄ = −2j(j + 1)

k
+

n2

2k
(83)

Setting j = − 1
2 +ip, and using the notation φp

n for the corresponding eigenfunction, it is possible normalize

things in such a way that

�
φp

n, φp�

n

�
= δnn� [2πδ(p− p�

) + R0(p
�, n)δ(p + p�

)] (84)
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Hence in a transfer matrix calculation we would see essentially a continuous spectrum above the central
charge c = 1. Note how the presence of operators with arbitrarily negative dimension does not make hte
theory unstable, does not affect the ground state in the transfer matrix calculations, etc.

Note one has to be careful with real exponentials and the IR cut-off which we have so far forgotten.
Indeed,

�eiαΦ(x)eiβΦ(0)� = exp
�
−1

2
�
(α2 + β2) ln(L/a) + 2αβ lnL/|x|

��

= exp [−αβ ln(a/x)] exp
�
−1

2
(α + β)2 ln(L/a)

�
(68)

We see that whenever α �= −β the two point function goes to zero in the infinite volume limit. Meanwhile
if we were to take real exponentials, there would be no i term, the last exponential would have the opposite
sign, and the correlator for α �= −β would diverge in the large L limit. One could still force α = −β to
obtain a finite result, whose meaning is not clear to me.

If we admit that the “full operator content” is made of fields e(a+ib)Φ, then a change of variables
Φ → iΘ should leaves it invariant. This corresponds however to a boson with the wrong sign of the
action,

S = −1
2

�
d2x∂µΘ∂µΘ (69)

and wrong sign propagator �Θ(z, z̄)Θ(0)� = − 1
4π ln |z|2 which should lead to the same partition function

however.
Note that in a theory with such propagator, we may decide to have Θ compactified. This will leave

only imaginary exponentials as allowed fields, which have negative dimensions. These fields should not
appear in the partition function, and I am not sure what the latter should be.

In the minisuperspace approximation, operators will become functions on the group. If the field is not
compactified, we are dealing with the real line, and operators are exponentials, while two point functions
are integrals on the group. So

�eiαΦeiβΦ� ∝
�

dΦeiαΦeiβΦ = 2iπδ(α + β) (70)

Meanwhile we have
�eαΦeβΦ� ∝

�
dΦeαΦeβΦ = ∞ (71)

hence recovering the foregoing results.
A physical example of non normalizable operators: one can give a weight larger than two to non

contractible loops on the cylinder, leading to negative critical exponents. Notice that by construction
this corresponds to α = −β.

10 SL(2, R)/U(1)

An important thing here is that while in the minisuperspace approximation there are only delta function
normalizable states, it is argued that in the finite k theory discrete normalizable states also appear, based
on the discrete series j half integer plus some winding states from the U(1) so as to make the whole
conformal weight positive. This is discussed after formula (5.14) in hep-th/0509155 of Volkers.

The classical action is usually written as

A =
k

4π

�
d2x

√
hhij

�
∂ir∂jr + tanh2 r∂iθ∂jθ

�
(72)

where h is the World Sheet metric. The target space metric is

ds2 =
k

2
dσ2, dσ2 = (dr)2 + tanh2 r(dθ)2 (73)
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Target space metric

STRING THEORY AND BLACK HOLES 315

L(g)= f v'h h'~Tr(g 'B,.gg 'i) g)+ikik
8m r

Here X is a Riemann surface with metric tensor
h, g:X~SL(2,E) is the field variable of the model, Tr is
the trace in the two-dimensional representation of
SL(2,E), k is a positive real number [as noted above, the
sign of the Lagrangian has been reversed compared to the
SU(2) case], and I is the Wess-Zumino term [29]. The
latter can be described as follows [30]. If B is a three-
manifold with boundary X, and we pick an extension of g
to a map from B to SL(2,E), which we also call g, then

symmetry corresponding to g ~agb ', with
a, bCSL(2, E). Usually it is possible to gauge an arbi-
trary subgroup of the global symmetry group of a theory,
but for WZW models, that is not possible, because of the
peculiar nature of the Wess-Zumino term. Only sub-
groups that obey a certain condition of anomaly cancella-
tion can be gauged. We first wish to consider the gauging
of an anomaly-free subgroup chosen to remove the nega-
tive signature mode of g so as to get a Euclidean signa-
ture conformal field theory. We consider the U(1) sub-
group generated infinitesimally by

I (g)= f Trg 'dg hg 'dg hg 'dg .1

12' B
(3)

0 1 0 1

0 8 +8 1 P (4)

As H (SL(2,IR),E)=0, I is independent of the choices
that have been made. Because of the indefinite signature
of the SL(2, IR) manifold, (2) does not lead to a unitary
conformal field theory. It is tempting to regard it as a
string solution in a three-dimensional Lorentzian world,
but the absence of an analog of the no-ghost theorem in
this situation [31,4] discourages this interpretation.
The Lagrangian (2) has a global SL(2,E)XSL(2,E)

I

To gauge this symmetry we introduce an Abelian gauge
field 3 with

The gauge-invariant generalization of the WZW action is
in local complex coordinates z, z (here d z denotes the
measure ~dz dz~)

0 1 0 1L'(gA)=L(g)+ fd z'ATr 1 0 g 'Bg+ATr
1 0 Bgg

0 1 0 1
+A, A —2+Tr

1 0 g —1 0 g

Because the gauge group has been chosen to act freely,
one can conveniently fix the gauge by gauging away one
component of g (such a gauge choice is often called a uni-
tary gauge). The gauge invariance can be precisely fixed
by setting

T

cosO sinO
g =coshr+sinhr sinO —cos8

As the Lagrangian is quadratic in 2, and the quadratic
piece is invertible and nonderivative, A can be integrated
out, to give

I(r, O)= fd z(B,rB,r+tanh rB,OB,O)k

I

tation as such a black hole. Before discussing this fur-
ther, let us note the following conundrum: the metric (9)
is certainly not fiat, and therefore it is not Ricci fiat (as
the two concepts coincide in two dimensions), so how can
the P function vanish even in the one-loop approxima-
tion, which is valid for large k? In problems of roughly
this type [32] (and in this precise problem for a different
real form of the metric [12]) it is known that a finite
correction coming from the measure in the integration
over A gives rise to a target space dilaton field, a more
accurate representation of the classical action for r and 0
being

I(r, O)= fd x&h h'(d;rB r+tanh rB, OB O)

k fd x&h h'~(d, rBJr+tanh rB, OB O) . fd2xV h q&(r, O)g'2'8~ (10)

(The Wess-Zumino term is a total derivative in this gauge
and has been dropped. )
As tanhr ~1 for large r, it is easy to see that the target

space metric of this theory,

for some function 4& on the target space. (R ' ' is the cur-
vature of the world-sheet metric h. ) Without imitating

ds2= —do z,with do. = [(dr ) +tanh r(d O) ], (9)
2

has the form (Fig. 1) of a semi-infinite cigar, asymptotic
for r~ ~ to RXS' with a Rat metric. In general, a d-
dimensional Euclidean black hole is asymptotic to
R" 'XS', so this space-time is a candidate for interpre- FIG. 1. A semi-infinite cigar. r non compact 

degree of freedom
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The Lagrangian (2) has a global SL(2,E)XSL(2,E)

I

To gauge this symmetry we introduce an Abelian gauge
field 3 with

The gauge-invariant generalization of the WZW action is
in local complex coordinates z, z (here d z denotes the
measure ~dz dz~)

0 1 0 1L'(gA)=L(g)+ fd z'ATr 1 0 g 'Bg+ATr
1 0 Bgg

0 1 0 1
+A, A —2+Tr

1 0 g —1 0 g

Because the gauge group has been chosen to act freely,
one can conveniently fix the gauge by gauging away one
component of g (such a gauge choice is often called a uni-
tary gauge). The gauge invariance can be precisely fixed
by setting

T

cosO sinO
g =coshr+sinhr sinO —cos8

As the Lagrangian is quadratic in 2, and the quadratic
piece is invertible and nonderivative, A can be integrated
out, to give

I(r, O)= fd z(B,rB,r+tanh rB,OB,O)k

I

tation as such a black hole. Before discussing this fur-
ther, let us note the following conundrum: the metric (9)
is certainly not fiat, and therefore it is not Ricci fiat (as
the two concepts coincide in two dimensions), so how can
the P function vanish even in the one-loop approxima-
tion, which is valid for large k? In problems of roughly
this type [32] (and in this precise problem for a different
real form of the metric [12]) it is known that a finite
correction coming from the measure in the integration
over A gives rise to a target space dilaton field, a more
accurate representation of the classical action for r and 0
being

I(r, O)= fd x&h h'(d;rB r+tanh rB, OB O)

k fd x&h h'~(d, rBJr+tanh rB, OB O) . fd2xV h q&(r, O)g'2'8~ (10)

(The Wess-Zumino term is a total derivative in this gauge
and has been dropped. )
As tanhr ~1 for large r, it is easy to see that the target

space metric of this theory,

for some function 4& on the target space. (R ' ' is the cur-
vature of the world-sheet metric h. ) Without imitating

ds2= —do z,with do. = [(dr ) +tanh r(d O) ], (9)
2

has the form (Fig. 1) of a semi-infinite cigar, asymptotic
for r~ ~ to RXS' with a Rat metric. In general, a d-
dimensional Euclidean black hole is asymptotic to
R" 'XS', so this space-time is a candidate for interpre- FIG. 1. A semi-infinite cigar.

compact

[Witten; Dijkgraaf Verlinde Verlinde; Bakas;  Maldacena Ooguri;Troost et al....]
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Spectrum:
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Normalizable states are mostly in the continuum (Laplacian on non compact target in mini 
superspace limit):

(s is momentum along the non compact direction)

almost the spin chain result but for this last term 

spin chain had c=2
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almost the spin chain result but for this last term 
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the identity operator  j=0 does not correspond to a normalizable state!

lowest normalizable state corresponds to s=0
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 Of course to properly identify the continuum we need the density of states
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Identification of the CFT
� Conformal dimensions (γ = π/k, k ∈]2,+∞[):

xe,m,s =
m2

2k
+

ke2

2
+

s2

k − 2

Same spectrum as WZW model on SL(2,R)/U(1)!

� k=level, (e,m)=exc. in compact direction, s=string momentum

� Density of states: ρ(s) = 2
π [log L + ∂s(sB)]

� Numerical solution of NLIE → B6V (s)
� Analytic calculation in SL(2,R)/U(1):

ρ(s) =
2

π
[− log � + ∂s(sB)]

B(s) =
1

2s
Im log

�
Γ

�
1−m + ek

2
− is

�
Γ

�
1−m − ek

2
− is

��

[Maldacena-Ooguri ’01]
[Hanany-Prezas-Troost ’02]
[Israel-Pakman-Troost ’04]

Known from CFT (Liouville reflection amplitude)

Liouville walk cutoff on the size of the target space

Analytical work on the finite chain:
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So far, B can only be determined numerically:

4

In Eqs. 14–15 (derived here for e = 0), L0 is a cut-off
depending only on γ, and B is a correction term which
we discuss below. More generally, for e != 0, a similar
derivation yields

∆E "
2πvf
L

(
γm2

2π
+

πe2

2γ
+

2γs2

π − 2γ

)
, p =

2πem

L
,

and hence

h =
(m+ ek)2

4k
+

s2

k − 2
, h̄ =

(m− ek)2

4k
+

s2

k − 2
, (16)

where (m, e) ∈ Z2, s ∈ R, and we have set k := π/γ.
Since s is real, this is a non-compact spectrum.
Relation to the sigma model. Recall now that,

while the SL(2,R)/U(1) black hole (BH) model has cen-
tral charge cBH = 2(k + 1)/(k − 2), the identity field in
that theory is associated with a non-normalizable state.
In fact, normalizable states arise mostly from continuous
representations, and have conformal weights as in (16),
but with the second term s2/(k − 2) replaced by a WZW-
type term −j(j + 1)/(k − 2), with j = − 1

2+is. The ‘bot-
tom’ of the spectrum thus occurs at h0 := 1/[4(k − 2)],
leading to an effective central charge c = cBH − 24h0 = 2
as in our lattice model. The spectrum (16) is thus for-
mally identical with the SL(2,R)/U(1) one [11, 15].
Since, in the large-L limit, s becomes a real parameter,

the spectrum (16) is a collection of continua over the con-
formal weights of a compact boson. In the SL(2,R)/U(1)
theory, this boson describes excitations along the com-
pact direction of the cigar (angular momentum of rota-
tions around the tip), whereas s is the angular momen-
tum along the axis of the cigar. We have expressed in (3)
the lattice operator S measuring this angular momentum.
In finite size, since s " πm̃/(4 logL), the s2 terms in (16)
correspond to the magnetic charge of a boson with effec-
tive compactification radius R ∝ logL.
As in ordinary quantum mechanics, there is actually

little dynamical information in the spectrum (16) alone:
what is really needed is the density of states. This can
also be extracted from our finite-size calculation. Denot-
ing q = exp(2iπτ) the modular parameter, the partition
function of our model on a torus reads, in the scaling
limit,

Z =
(qq̄)−2/24

|η(τ)|4
∑

e∈Z, m+m̃∈2Z

qh q̄h̄

=
(qq̄)−2/24

|η(τ)|4
∑

e,m∈Z2

∫ +∞

−∞
ds ρ(s) qh q̄h̄ ,

where η is the Dedekind eta function, and the density of
states is

ρ(s) =
2

π

[
log

L

L0
+ ∂s(sB)

]
, (17)

where B was introduced in (14). The logarithmic di-
vergence with the IR cutoff is familiar in the sigma
model [15], whereas the finite part of ρ(s) is determined
by requiring m̃ ∈ Z in (14). Consider the purely magnetic
state Ψm0,m1,0. Our WH technique only gives access [26]
to the function B in the regime of large s and m, where
we get

B(γ,m, e = 0, s) ∼

{
− log s for s ' m,

− logm for s ( m.
(18)

We believe it will eventually be possible to obtain more
complete results on B by a deeper analysis of the BAE.
For now, in order to interpolate between the above limit-
ing behaviors, we compute B numerically, by solving (4–
5) at finite L: see results on Figs. 1–2. The only ad-
justable parameter in these computations is L0, which
can be fixed, e.g., by imposing the value of B in the
ground state m = e = s = 0. Slow convergence with
the system size is to be expected, because higher-order
corrections to Eq. 14 are of order 1/ logL.
The finite part of the density of states ρ(s) in the

SL(2,R)/U(1) sigma model was calculated in [10, 11] (see
also [27]), and reads, in our parametrization,

BBH(s) =
1

2s
Im log

[
Γ
(
1−m+ek

2 − is
)
Γ
(
1−m−ek

2 − is
)]

.

(19)
This function obeys the asymptotic behavior (18), and
numerical agreement with the finite part in our model is
good, as shown in Figs. 1–2. Moreover, we have com-
puted the values of (B − Bgs), where Bgs stands for the
ground-state value of B, in the limit s → 0, to check that
L0 depends only on γ: see Fig. 3.

SL(2,R)/U(1)
L = 8192
L = 4096
L = 2048
L = 1024
L = 512

s

20151050

2

1.5

1
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-2.5

FIG. 1. (Color online) Finite part B(s) of the density of
states (17) for the continuum over the ground state of the Z2

model at γ = π/5, compared to BBH.

To conclude, we have identified the continuum limit
of our spin chain as the SL(2,R)/U(1) black hole sigma

analysis of Bethe ansatz equations

[Maldacena Ooguri; Teschner, Zamolodchikov^2; Fateev; Troost et al.;...]

[Candu, Ikhlef, Jacobsen, HS]
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Density of states
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analysis of non linear 
integral (DDV) equations

[Candu Ikhlef; Lukyanov HS]
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Normalizable discrete states:

Figure 2: The ground state as a function of
2ϕ
π . In the domain studied, it is obtained by three sections

of parabolas. fig2

If we take the level p = 0 for instance, we see that it should disappear when
ϕ
π =

k−1
k . But this is

precisely where the function c1 intersects the ‘excited winding mode’ where in c∗, instead of taking just

φ, we can take φ ± e, e electric charges, here e = 1. The corresponding central charge is in fact

c1 = −1 +
3k

k − 2

�
1− 2

k

�2

= 2− 6

k
(15)

again. What happens is then sketched on the figure
fig2
2: the discrete level ‘returns to the continuum’.

Of course, ϕ strictly speaking is only defined in the interval [−π, π], but we can always extend this

definition precisely by shifting by charges e. We can also increase k to put more features in the basic

ϕ interval.

The same phenomenon is observed for the other levels as well.

We can also investigate what happens when the magnetization is non zero. In this case the number

n in the general formula is exactly equal to the number m on the lattice, while the normalizable states

now obey

j ∈
�
1− k

2
,−1

2

�
∩ N− 1

2
|kw| + 1

2
|n| (16)

This means, for instance, that the first discrete level now appears for

−1

2

����
kϕ

π

���� +
|m|
2
≤ −1

2
(17)

or

ϕ ≥ π

k
(1 + |m|) (18)

3

and j real variable 

It is possible to adjust w in the lattice model by turning on a twist in the Bethe equations 
(twisted b.c.) 

DISCRETE LEVELS IN THE BLACK HOLE SIGMA MODEL

Notes by H. Saleur

July 3, 2013

I am trying to use the same notation as Constantin and Yacine in their draft. They observe in

particular that, for e = m = 0, the levels in the sector of roots they we able to study are given by

∆ = ∆̄ =
s2

k − 2
+ k

ϕ2

4π2
, (1) expoi

The same levels are observed in the case of the O(n) model in regime III. In my notes, I use a lightly

different parametrization, and to compare one must set in my notes k → k− 2 and Φ → 2ϕ. Finally, I

call ∆, ∆̄ the gaps over the observed ground states, which is not the same as the true conformal weights

in the black hole theory.

Translating the observations made by Nienhuis et al. and those made with Jesper, I claim that

the ground state of the theory as measured in the spectrum corresponds to (
expoi
1) (with s = 0) only for

ϕ small enough. The measured central charge in general is given by (this follows from numerics and

Bethe ansatz)

cmea = 2− 6k

�ϕ

π

�2
, ϕ ≤ π

k

cmea = −1 +
3k

k − 2

�
2ϕ− π

π

�2

,
π

k
≤ ϕ (2)

We will denote the first expression by c∗, the second expression by c1. We observe that

c1 = c
∗

+
6

π2(k − 2)
(π − kϕ)

2
(3)

We will moreover introduce a family of effective central charges:

c2p+1 = c
∗

+
6

π2(k − 2)
[(2p + 1)π − kϕ]

2
(4)

The main idea is that this weird behavior of the levels is entirely explained by the existence of

discrete normalizable states in the Euclidian black hole spectrum.

To see this, recall that the exponents of the SL(2, R)/U(1) model read
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+
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2

4k
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2

4k
(5)

while the central charge is cBH = 2 +
6

k−2 . For the continuous series, j = − 1
2 + is so, restricting to

n = 0 for now

cBH − 24h = 2− 24
s2

k − 2
− 6kw

2
(6)

Comparing with formula (
expoi
1) before, we identify

w ≡ ϕ

π
(7)

Meanwhile, the are also exponents in the discrete series (see eg Ribault Schomerus
RibSch
[1]) for which,

cBH − 24h = 2 +
6

k − 2
(2j + 1)

2 − 6kw
2

(8)

where j belongs to a special set see below.Now of course, in the pure black hole model, w must be

integer. In that case, it is known that there are normalizable discrete states for (recall, n = 0 so

far)
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As the twist increases,discrete levels pop out of the continuum
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effective ground state
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Conclusions

 We now know many more examples. They involve various cosets and supercosets 
(higher dimensional black holes, super black holes),  and more or less generic 
microscopic models. 

 The essential mechanism leading to non compact targets in the scaling limit remains 
mysterious

 Non compactness of the target appears also in the description of transport. Non 
hermitian QM is often used as a model for open quantum systems. How is this 
related? 

 Way to study massive deformations of non compact targets (complex sine-Gordon/
sinh-Gordon). Useful to understand issues such as non normalizability, discrete states 
etc
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